#### Westinghouse Non-Proprietary Class 3

LTR-NRC-06-57 NP-Attachment

#### Draft Slide Presentation for the POLCA-T Topical Report Pre-Submittal Meeting (Non-Proprietary)

Westinghouse Electric Company P.O. Box 355 Pittsburgh, Pennsylvania 15230-0355

© 2006 Westinghouse Electric Company LLC All Rights Reserved

## Westinghouse Non-Proprietary Class 3 DRAFT

## POLCA-T NRC Licensing: Code Description

NRC/Westinghouse Meeting Rockville, Maryland November, 2006

> Westinghouse Electric Company P.O. Box 355 Pittsburgh, PA 15230-0355

© 2006 Westinghouse Electric Company LLC All Rights Reserved



#### Content

- Code Structure
- Overall Model Formulation
- Hydrodynamic Model
- Reactor Kinetics Model
- Constitutive Models
- Heat Structure Models

- Fuel Rod Model
- Component Models
- Basic Solution Method
- Example from validation base
- Conclusion



The POLCA-T code is based to an extent on the

following codes:



#### Bases for POLCA-T

| Code | Application area | Feature used in |
|------|------------------|-----------------|
|      |                  |                 |

POLCA-T

RIGEL Transients and LOCA Design

GOBLIN BWR LOCA & plant simulation Num Method

POLCA7 Static Core Design
 Neutron Kinetics

BISON BWR Transients
 Specific models

STAV7 Fuel rod simulation Fuel Rod Equ.

– PARA Steam line models As it is

All codes are USNRC licensed except the RIGEL code

- Computational procedure
  - POLCA7 3D neutronics calculation
  - POLCA-T calculation
    - core and system T/H response, all assemblies and bypass
    - fuel temperature

Interaction between POLCA-T and POLCA7 codes



#### **Overall Model Formulation**

#### Methods and Formulation

- -Thermal-Hydraulics:
  - Five-equations formulation
    - mass balance (2 eq)
    - energy balance (2 eq)
    - momentum balance (1 eq)
    - Drift flux relation or CCFLrelation (1 eq)
    - Average volume cell velocities ( 2 eq )

- Boron mass transport
- Non condensable gas mass balance
- Heat structure:
  - finite difference formulation
  - -1D conduction
  - HTC by correlations



#### **Overall Model Formulation**

- Building blocks
  - -Volume cells
  - -Flow paths
  - -Heat structures
  - -Heat generation
  - -Components
  - -Special phenomena

#### Features

- BWR or PWR
- Non nuclear systems
- Free modeling
- Different fuel types
- Virtually no limits in cells, heat structures, number of pumps, etc



## **Overall Model Formulation**



#### **DRAFT**

### **Overall Model Formulation**

Typical reactor model with internal parts, jet pumps, core and pressure vessel

The entire core is imported automatically from POLCA7





# Hydrodynamic Model

• Primary variables:

volume cells

a,

# Hydrodynamic Model

POLCA-T PrimaryVariables

Volume cell

a, c



# Hydrodynamic Model

Primary variables:

```
Flow path
a, c

a, c
```



#### **Reactor Kinetics Model**

- Nuclear kinetics
  - 3D kinetics
  - POLCA7:
    - Two groups model
    - Analytical Nodal Method
    - Iteration scheme

- Axial homogenization model
- Reflector model
- Cross Section model
- Depletion models



### Reactor Kinetics Model

- Numerical method
  - NEU3
    - Standard 2-group Analytic Nodal Method (ANM) with quadratic transverse leakage approximation
    - Default method for both BWR & PWR



- Pressure losses
  - Colebrook or can opt for other correlations
  - Singular losses Re dependent
  - Other fuel dependent correlations

- Drift Flux Equation
  - The sixth equation

$$F_{drift} = u_{liq} \cdot S + u_{rel} - u_{gas}$$

- Drift Flux Models
  - Holmes type model
  - DF02 model

- Drift flux model of Holmes type
  - The slip

$$S(\alpha, p) = \frac{u_g}{u_1} = \frac{1 - \alpha}{\frac{1}{C_0} - \alpha}$$

–The relative velocity

$$u_{r}(\alpha, p) = \frac{C_{0}K_{u}V_{c}}{1 - \alpha C_{0}\left(1 - \sqrt{\frac{\rho_{g}}{\rho_{1}}}\right)}$$

Drift flux model of DF02 type



## **Heat Structure Models**

- Heat structures
  - SLABS or RODS or CYLINDRICAL GEOMETRY
    - −1 D conduction
    - User-specified properties versus temperature
    - User-specified power distribution
    - -HTC correlations

## **Heat Structure Models**

- Modeling of the core
  - Imported from POLCA7, static simulation
  - All assemblies, can take advantage of symmetry
  - Inter assembly bypass
  - Outer bypass





### **Heat Structure Models**

- Modeling of the fuel assembly with fuel rods
  - Boxes, cross and wings
  - Internal bypass
  - Leakage flows
  - Part length rods mixed with full length
  - Water rods



## **Fuel Rod Model**

#### Fuel rods

- as regular heat structures
- pellet, gas gap & cladding
- dynamic gas gap
- radial power distribution within the pellets
- fission gas release





# **Component Models**

- Pumps
  - Centrifugal pumps
  - Jet pumps
- Drives
  - Electrical motors
- Valves
  - Safety relief valves
  - Check valves



# **Component Models**

#### Centrifugal pumps

- based on homological curves for pressure head, volume flow rate, and torque
- torque balance equation for the shaft to the drive
- can be added elsewhere in the model
- friction at rest



# **Component Models**

- Jet pump
  - created from the building blocks
  - can have many pumps
  - drive pump is a centrifugalpump



General equation for POLCA-T

is:

$$F_{tr} \sum_{u=1}^{m_k} h_{uk}(\mathbf{y}) \frac{d(g_{uk}(\mathbf{y}))}{dt} = f_k(\mathbf{y})$$

$$F_{tr} = 0$$
 (steady state)

$$F_{tr} = 1$$
 (transient conditions)

$$\mathbf{y}_{k}^{t+1} = \mathbf{y}_{k}^{t} + \Delta t \cdot \mathbf{y}_{k}^{t}$$

- –Equation solver
  - -Direct solver MA-28 used in POLCA-T (T/H)-part
  - -Developed for large, sparse unsymmetrical system
    - -First step, MA28A, strategy & stability determination of complete partitioning
    - -Second step, MA28B, factorization and elimination
    - -Third step, MA28C, back substitution, i.e. solving for actual right hand side

Same formulation both in steady state as in transient calculation, example:

—In steady state:

$$F_{TR} = 0, \Theta_f = 1., \Theta_h = 1 \text{ and } \Delta t = 1.$$

$$\sum_{j=1}^{n} -\frac{\partial f_k}{\partial y_j} \Delta y_j = f_k^{n+1,r}$$

$$y_j^{i+1} = y_j^i + \Delta y_j$$

• For each equation, energy, momentum, etc



#### **DRAFT**

# **Example from Validation Base**

#### Analytical solutions:

- Oscillations in U-tube
- Incompressible flow



Compressible flow



Gravity driven flow



#### Separate effects:

INEL jet pump tests



Steam separator tests



FRIGG void



FRIGG pressure drop



FIX II Post Dryout



FRIGG dryout



- [ ]a, c channel flow



RIA SPERT III E-Core



#### **DRAFT**

# **Example from Validation Base**

#### •Integral tests, stability:

- \_ [ ]a, c
- \_ [ ]a, c
- \_ [ ]a, c
- [ ]a, c
- [ ]а, с
- **–** ...

#### •Integral tests, transients:

- ]а, с ТТ
- [ ]a, c pump trip
- [ ]<sup>a, c</sup> pancake core

# Integral tests, static:

- Benchmark vs POLCA7
- [ ]a,c Start-up sequence
- [ ]a,c Core follow
- \_ ...



### Conclusion

- The code is based on well established codes such as GOBLIN,
   BISON, POLCA7
- An evolution from older codes above with modern design
- The code is very general and flexible
- The code has a large validation base
- Validation base covers transients, stability, separate effects

# POLCA-T NRC Licensing: Control Rod Drop Accident Application

NRC/Westinghouse Meeting Rockville, Maryland November, 2006



#### **Outline**

## **Contents of Topical Report:**

- 1. Summary and Conclusions
- Control Rod Drop Accident (CRDA) Model Requirements
- Assessment Data Base
- 4. Westinghouse BWR CRDA Analysis Methodology
- 5. Evaluation Model Assessment
- Appendices

## Outline (cont.)

#### Contents of Topical Report (cont):

- Appendices
- Qualification against NEACRP 3-D LWR Core Transient Benchmark
- 2. Qualification against [ ]<sup>a,c</sup> End of Cycle 2 Turbine Trip Tests
- 3. Qualification against SPERT-III-E Core Experiments
- 4. POLCA-T Comparison with RAMONA

## 1. Summary and Conclusions (cont.)

- Scope
- Describes Westinghouse BWR CRDA Methodology
- Provides qualification information
- Demonstrates that the methodology is adequate for ensuring compliance to GDC 28 and SRP (NUREG-0800)
- Westinghouse methodology for performing CRDA analyses and the systematic cycle-specific analysis strategy
- 2. Objectives
- Identify specific design bases which, if satisfied, assure that all requirements specified in GDC 28 and NUREG-0800 applicable to the CRDA are satisfied
- Apply up-to-date methods and models
- Decrease conservative unjustified assumptions

## 1. Summary and Conclusions (cont.)

- 3. Conclusions
- The design bases identified are sufficient to assure that all requirements and guidelines identified in the GDC and NUREG-0800 for the CRDA will be satisfied
- The methodology and strategies described are acceptable for design and licensing purposes, i.e. for identifying the limiting event and evaluating BWR plant response and subsequent consequences to the fuel systems
- The methodology can be used to analyze CRDA for variety of core and control rod designs

## 2. CRDA Model Requirements

- The event can occur in any reactor operating state
- > Consideration to all the CR configurations in normal operation
- CR configurations can result of equipment malfunction or operator error
- Most unfavorable conditions:
- At low or zero power conditions
- > CR patterns that provide the highest values of incremental single CR worth
- Strongly subcooled conditions (start-up from cold shut down)

## 2. CRDA Model Requirements (cont.)

- Plant specific: hardware employed for rod sequence control and the technical specifications concerning inoperable rods in order to determine the limiting incremental rod worth
- Banked Position Withdrawal Sequence (BPWS) plants: Rod Worth Minimizer used below a specified power (typically 5 to 20 %) to enforce the rod withdrawal sequence
- Group Notch class of plants: a group notch Rod Sequence Control System (RSCS) is installed to control the sequence of rod withdrawal
- For GE-built BWR/6 plants a Rod Pattern Control System (RPCS) is used to enforce BPWS rules

## 2 CRDA Model Requirements (cont.)

#### Accident Description

- Fully inserted CR becomes decoupled from its drive and sticks in the fully inserted position
- The rod is assumed to drop at the time when under critical reactor conditions, a rod pattern exists for which the decoupled rod has the maximum incremental worth
- The reactor goes on a positive period, and the initial power burst is terminated by the fuel temperature reactivity feedback
- The 120% APRM power signal scram occurs (no credit is taken for the Intermediate Range Monitor or set-down APRM scram)
- All withdrawn rods, except the decoupled rod, scram at the technical specification rate
- A scram terminates the accident

## 2. CRDA Model Requirements (cont.)

- 2. Current Analysis Method
- NRC-approved CENPD-284-P-A, July 1996, RAMONA-3B
- 3. Design Basis selected to be in compliance with
- GDC 28 (10CFR 50, Appendix A)
- SRP 15.4.9 and 15.4.9A (NUREG-0800)
- 4. Parameter Sensitivities PIRT Tables
- PIRT Tables based on NUREG/CR-6742 and NUREG/CR-1749
- POLCA-T performed sensitivity studies

#### 3. Assessment Data Base:

#### POLCA-T Qualification for CRDA Analysis

- Qualification against NEACRP 3-D LWR Core Transient Benchmark
- 2. Qualification against [ ]a,c End of Cycle 2
  Turbine Trip Tests
- 3. Qualification against SPERT-III-E Core Experiments
- 4. Nuclear Heating Event [ ]a,c in 2000
- 5. POLCA-T Comparison with RAMONA-3B

#### 3.1 POLCA-T NEACRP 3-D LWR Benchmark

#### Benchmark specifications:

- PWR Rod Ejection Accident
- Westinghouse 3-loop core with 157 fuel assemblies
- Core loading pattern is a typical first core checkerboard
- Three batches of fuel assemblies using burnable absorbers
- Six Problems:

| Case       | Geometry  | Initial state | Ejected Rod |
|------------|-----------|---------------|-------------|
| <b>A</b> 1 | octant    | HZP           | central     |
| A2         | octant    | HFP           | central     |
| B1         | octant    | HZP           | peripheral  |
| B2         | octant    | HFP           | peripheral  |
| C1         | full core | HZP           | peripheral  |
| C2         | full core | HFP           | peripheral  |

#### POLCA-T (POLCA/RIGEL) Analysis:

- Problems A1 and C1: HZP = 2775 W
- Problems A2 and C2: HFP = 2775 MW
- Core radially surrounded by one layer of 64 reflector assemblies
- The top and bottom 30 cm thick axial reflectors
- One or four radial node(s) per fuel assembly – 1x1, 2x2;
- 16 axial nodes
- Heat conduction equation in fuel in 8 annular zones

Reference solutions provided by Nuclear Energy PANTHER code: solves two-group homogeneous neutron diffusion equations in both steady-state or transient form using an analytical nodal method, generalized thermal-hydraulics feedback model for PWR.



#### 3.1 POLCA-T NEACRP 3-D LWR Benchmark

#### POLCA-T Results and Comparison with PANTHER reference results

|                                      |       |             | Code  |                  |         |                                                   |       |       |
|--------------------------------------|-------|-------------|-------|------------------|---------|---------------------------------------------------|-------|-------|
| Davamatar                            | Nodes | POLCA/RIGEL |       | PANTHER          |         |                                                   |       |       |
| Parameter                            |       | 1x1         | 2x2   | 2x2 2x2<br>First | 1x1     | 2x2                                               | 4x4   | 8x8   |
|                                      | Case  |             |       |                  | Revised |                                                   | ·     |       |
| Max power, %                         | A1    | 112.0       | 143.0 | 117.9            | 89.2    | 121.4                                             | 124.9 | 125.2 |
|                                      | A2    | 107.4       | 107.5 | 108.0            | 107.7   | 108.0                                             | 108.0 | 107.9 |
|                                      | C1    | 628.0       | 560.0 | 477.3            | 547.1   | 497.3                                             | 491.3 | n.a.  |
|                                      | C2    | 106.9       | 106.8 | 107.1            | 107.2   | 107.1                                             | 107.1 | n.a.  |
| Time of max power, s                 | A1    | 0.590       | 0.550 | 0.560            | 0.556   | 0.560                                             | 0.233 | 0.553 |
|                                      | A2    | 0.100       | 0.100 | 0.100            | 0.100   | 0.100                                             | 0.100 | 0.100 |
|                                      | C1    | 0.250       | 0.270 | 0.268            | 0.263   | 0.270                                             | 0.270 | n.a.  |
|                                      | C2    | 0.100       | 0.100 | 0.100            | 0.100   | 0.100                                             | 0.100 | n.a.  |
| Final values at 5 sec                |       |             |       |                  |         | <del>, , , , , , , , , , , , , , , , , , , </del> |       |       |
| Power, %                             | A1    | 20.1        | 20.3  | 19.6             | 19.6    | 19.6                                              | 19.3  | 19.4  |
| Core average Doppler Temperature, °C | A1    | 321.7       | 322.5 | 324.3            | 323.9   | 324.5                                             | 324.3 | 324.2 |
| Coolant Outlet<br>Temperature, °C    | A1    | 292.9       | 293.0 | 293.1            | 293.0   | 293.1                                             | 293.1 | 293.0 |



#### 3.1 POLCA-T NEACRP 3-D LWR Benchmark

#### **Conclusions:**

- Good agreement with PANTHER reference result
- Conservative power predictions
- Accurate fuel and kinetics models

#### 3.2. POLCA-T [ ]a, c EOC 2 Turbine Trip Tests

Very Fast Transient with the same time scale as CRDA, validates thermalhydraulics and kinetics models

OECD/NRC BWR turbine trip (TT) benchmark

- All Exercises 1, 2, 3
- Best Estimate Scenario and
- Four Extreme Scenarios
- [ ]<sup>a, c</sup> EOC2 TT1, TT2, and TT3 tests
- No benchmark limitations
- PHOENIX XS
- POLCA7 core follow
- POLCA-T models
- Sensitivity Studies
- TIP and LPRM comparison





#### 3.2. POLCA-T [ ]a, c EOC 2 Turbine Trip Tests



# 3.2. POLCA-T [ ]a, c EOC 2 Turbine Trip Tests a,b,c

#### 3.2. POLCA-T [ ]a,c EOC 2 Turbine Trip Tests

#### **Conclusions:**

D/NRC BWR turbine trip (TT) benchmark

- All Exercises 1, 2, 3.
- Best Estimate Scenario and
- Local power

Very Fast Transient with the same time scale as CRDA, validates thermal-hydraulics and kinetics models [ ]<sup>a, c</sup> EOC2 TT1, TT2, and TT3 tests

- No benchmark limitations
- PHOENIX XS
- POLCA7 core follow
- POLCA-T models
- Sensitivity Studies
- TIP and LPRM comparison

#### 3.3. POLCA-T SPERT-III-E Core Experiments

#### SPERT-III-E Core

- PWR fuel design with boxes
- BWR cruciform transient CR
- Stationary CR Fuel followers with unknown positions
- Small reactor ~ 1x1x1 m
- Very high neutron leakage
- Non-commercial reactor: very special set-up
- Very high measurements uncertainty
   Difficult to model and hard to draw conclusions

|    | 1             | 3    | 5 | 7   | 9  | 11 | 13 | 15 |  |
|----|---------------|------|---|-----|----|----|----|----|--|
|    |               |      |   |     |    |    |    |    |  |
| 16 |               | Α    | Α | Α   | В. | Α  | Α  |    |  |
| 14 | Α             | Α    | В | В   | (G | G  | Α  | A  |  |
| 12 | Α             | С    | Ġ | D   | E  | G  | В  | Α  |  |
| 10 | В             | G    | Е | F   | F  | D  | В  | Α  |  |
| 8  | Α             | ·B   | D | X   | F  | E  | G  | В  |  |
| 6  | Α             | В    | Ø | E   | D  | G  | C  | Α  |  |
| 4  | Α             | X    | C | G   | B  | ъB | Α  | A  |  |
| 2  | $\overline{}$ | Α    | Α | ∦B. | Α  | Α  | Α  |    |  |
|    |               | - Li |   |     |    |    |    |    |  |
|    | -             | rı   |   |     |    |    |    |    |  |

- A: 25-rod assembly
- B: 25-rod assembly adjacent to 16-rod assembly with Control Rod (G)
- C: 25-rod assembly adjacent to two 16-rod assemblies with Control Rod (G)
- D: 25-rod assembly adjacent to 16-rod assembly with Control Rod (G) and 16-rod assembly (F)
- E: 25-rod assembly adjacent to two 16-rod assemblies with Control Rod (G) and 16-rod assembly (F)
- F: 16-rod assembly
- G: 16-rod assembly with Control Rod
- H: Transient Rod
  Empty position

#### PHOENIX4/POLCA7/POLCA-T code package

- Special NGET procedure for radial reflector XS and axial boundaries data and PHOENIX4/POLCA7 color set calculations
- Steady states adjusted
- No transient adjustments

#### Six cases analyzed:

• Four CZP: 18, 22, 43, 49

• Two HZP: 32, 62



#### 3.3. POLCA-T SPERT-III-E Core Experiments



## 3.4. POLCA-T Comparison with RAMONA-3B



## 4. Westinghouse BWR CRDA Analysis Methodology

 Two Step Methodology a,b,c

#### 4. Westinghouse BWR CRDA Analysis Methodology

1. Introduction (Evaluation Model)

#### 5. Evaluation Model Assessment

a, c



## Conclusions

a, c



# POLCA-T NRC Licensing: Stability Applications

NRC/Westinghouse Meeting Rockville, Maryland November, 2006

- Introduction
- Background

- Measurements and calculations
  - \_[ ]a, c
  - Uncertainty analysis
  - Comparison of measured and calculated data

#### **Outline**

- Introduction
- Background
- Measurements and calculations
- Sensitivity study
- Methodology
- Concluding remarks

#### Introduction

- US: no measurements / Europe: regular measurements
- Different purposes for measurements
  - Confirmation of stability characteristics in connection with power uprates and introduction of new fuel designs
  - Confirmation of pre-calculations
- Different methodology for measurements
  - Noise evaluation (stable conditions)
  - Stability limit search

#### Introduction

- Different origin of requirements
  - Authorities
    - cycle specific
    - in connection with large changes
  - Local plant instructions

**]**a, c

- ASEA Atom BWR-75 (1981)
- 2711 MW<sub>th</sub>
- 676 fuel assemblies
- Uprate to 108% (1987)
- Cycle specific measurements (BOC, MOC)
  - Confirmation of pre-calculations
  - Defining exclusion region, partial scram
- C19 and C20 (2000-2002), 9 measurements



a, c

#### a, c

- ASEA Atom external pump design (1977)
- 2270 MW<sub>th</sub>
- 648 fuel assemblies
- Uprate to 110% (1989)
- Cycle specific measurements
  - Confirmation of pre-calculations
- C14 C17 (1990-1994), 40 measurements
- OECD/NEA benchmark

[ ]a, c

- GE BWR/6 (1984)
- 3138 MW<sub>th</sub>
- 648 fuel assemblies
- Uprate to 112% (1996)
- Uprate to 115% (2002)
- Investigate stability characteristics
  - C7 (1990), verification of the stability monitor COSMOS
  - C10 (1993), mixed core characteristics



- -C13 (1999), power uprate program
- -C19 (2002), power uprate program NACUSP (European Union)
- 16 measurements

a, b, c

## Measurements and calculations

a, c





## Measurements and calculations

a, b, c



## Measurements and calculations

a, b, c













# Sensitivity study

a, c

# Sensitivity study



# Methodology

a, c

# **Concluding remarks**

